“Rainbow and Rainy Day”
Natalie Pate
Grade K - MILA Elementary
Art Teacher – Tricia Audet-Henderson

2018
2019
The School Board of Brevard County, Florida prohibits discrimination on the basis of race, color, national origin, sex (including sexual orientation, transgender status, or gender identity), disability (including HIV, AIDS, or sickle cell trait), pregnancy, marital status, age (except as authorized by law), religion, military status, ancestry, or genetic information or any other factor protected under applicable federal, state, or local law in its educational programs, services or activities, or in its hiring or employment practices. The district also provides equal access to its facilities to the Boy Scouts and other patriotic youth groups, as required by the Boy Scouts of America Equal Access Act. The School Board of Brevard County is in compliance with the Americans with Disabilities Act of 1990 (ADA) and the Amendment Act of 2008 (ADAA), the Florida Education Equity Act of 1984, Age Discrimination Act of 1967 and Section 504 of the Rehabilitation Act of 1973, Civil Rights Act of 1964 including; Title II, Title VI, and Title VII, United Stated Education Amendments of 1972 - Title IX, Age Discrimination in Employment Act (ADEA), Individuals with Disabilities Act (IDEA), and the Boy Scouts of America Equal Access Act. Questions, complaints, or requests for additional information regarding discrimination or harassment may be sent to the following equity coordinators:

Student/Public Equity
Ms. Stephanie Archer
Assistant Superintendent
Equity, Innovation, and Choice
2700 Judge Fran Jamieson Way
Melbourne, FL 32940
(321) 633-1000, Ext. 500
CSC@Brevardschools.org

Exceptional Education/504 Equity
Dr. Patricia Fontan
Dir. Administrative Support Services
2700 Judge Fran Jamieson Way
Melbourne, FL 32940
(321) 633-1000, Ext. 500
CSC@Brevardschools.org

Employee/Job Applicant Equity
Mr. Rivers Lewis
Dir. Human Resources & Labor Rel.
2700 Judge Fran Jamieson Way
Melbourne, FL 32940
(321) 633-1000, Ext. 500
CSC@Brevardschools.org

Title IX
Mr. Bill Macheras
Asst. Dir., Athletics and Activities
2700 Judge Fran Jamieson Way
Melbourne, FL 32940
(321) 633-1000, Ext. 500
CSC@Brevardschools.org

Reasonable accommodations are available for persons with disabilities to complete the application and/or interview process. Applicants/Individuals with disabilities requesting accommodations under the Americans with Disabilities Act (ADA) may contact the Employee/Job Applicant Equity Coordinator for assistance. This Publication or portions of this publication can be made available to persons with disabilities in a variety of formats, including large print, braille or audiotape. Telephone or written request should include your name, address, and telephone number. Requests should be made to Exceptional Education Projects, (321) 633-1000, ext. 535, at least two (2) weeks prior to the time you need the publication.
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>School/Teacher Handbook Section</td>
<td></td>
</tr>
<tr>
<td>Art and Science Fair Divisions</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Important Dates and Times</td>
<td>4</td>
</tr>
<tr>
<td>Student Interview Times</td>
<td>5</td>
</tr>
<tr>
<td>Northern Division Science Fairs, Guidelines and</td>
<td>6</td>
</tr>
<tr>
<td>Requirements for Teachers</td>
<td></td>
</tr>
<tr>
<td>Summary of School Responsibilities for Northern Division Fair</td>
<td>14</td>
</tr>
<tr>
<td>School Application Form</td>
<td>16</td>
</tr>
<tr>
<td>Student Handbook Section</td>
<td></td>
</tr>
<tr>
<td>Art and Science Fair Divisions</td>
<td>18</td>
</tr>
<tr>
<td>Important Dates and Times</td>
<td>19</td>
</tr>
<tr>
<td>How to Do a Science Fair Project</td>
<td>20</td>
</tr>
<tr>
<td>Wording of Science Project “Problems”</td>
<td>24</td>
</tr>
<tr>
<td>Northern Division Science Fairs, Guidelines and</td>
<td>25</td>
</tr>
<tr>
<td>Requirements for Students</td>
<td></td>
</tr>
<tr>
<td>Qualified Scientist Form</td>
<td>34</td>
</tr>
<tr>
<td>Designated Supervisor Form</td>
<td>35</td>
</tr>
<tr>
<td>Elementary Science Project Research Plan and Approval Form</td>
<td>36</td>
</tr>
<tr>
<td>Informed Consent Form</td>
<td>37</td>
</tr>
<tr>
<td>Human Subject Verification of Informed Consent Form</td>
<td>38</td>
</tr>
<tr>
<td>BSL-1 Checklist- For Pathogenic Hazardous Biological Agents</td>
<td>39</td>
</tr>
<tr>
<td>Science Fair Contact Checklist Confirmation</td>
<td>40</td>
</tr>
<tr>
<td>Discovery Division</td>
<td>Columbia Division</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Anderson</td>
<td>Apollo</td>
</tr>
<tr>
<td>Cambridge</td>
<td>Atlantis</td>
</tr>
<tr>
<td>Cape View</td>
<td>Audubon</td>
</tr>
<tr>
<td>Challenger 7</td>
<td>Coquina</td>
</tr>
<tr>
<td>Divine Mercy</td>
<td>Enterprise</td>
</tr>
<tr>
<td>Emma Jewel Charter</td>
<td>Imperial Estates</td>
</tr>
<tr>
<td>Endeavour</td>
<td>Lewis Carroll</td>
</tr>
<tr>
<td>Fairglen</td>
<td>MILA</td>
</tr>
<tr>
<td>Freedom 7</td>
<td>Mims</td>
</tr>
<tr>
<td>Golfview</td>
<td>Oak Park</td>
</tr>
<tr>
<td>Manatee</td>
<td>Our Saviour</td>
</tr>
<tr>
<td>Ralph Williams</td>
<td>Pinewood</td>
</tr>
<tr>
<td>R. L. Stevenson</td>
<td>St. Teresa</td>
</tr>
<tr>
<td>Roosevelt</td>
<td>Sculptor Charter</td>
</tr>
<tr>
<td>St. Mark’s</td>
<td>South Lake</td>
</tr>
<tr>
<td>Saturn</td>
<td>Tropical</td>
</tr>
<tr>
<td>Viera Charter</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The purpose of this document is to provide direction and assistance for students, teachers, and parents involved in the Northern Division Elementary Art and Science Fair processes. The design is also intended to alleviate some of the mystery and frustration that can be associated with science projects/fairs.

The booklet is divided into three sections: Section 1, the School/Teacher Handbook, will be useful for teachers and administrators desiring detailed school information including guidelines, requirements, judging criteria, updated schedules, important rules changes, school responsibilities, registration forms, and science project help. Section 2, the Student Handbook, is an adapted version of the School/Teacher Handbook containing materials appropriate to students. The Student Handbook can be modified for school fair use by adding material from the teacher version. Section 3 includes the Art Fair Information Packet.

Electronic copies of this handbook is on the BPS Elementary Science website: http://tinyurl.com/BPSelementaryscience.

Appreciation is expressed to all individuals whose contributions have assisted in the development of this document.

With parent supervision, students can visit Internet sites for more information about science Fair projects:

- Brevard’s Elementary Science website: http://tinyurl.com/BPSelementaryscience
- ScienceBuddies http://www.sciencebuddies.org/
- Centers for Disease Control and Prevention http://www.cdc.gov/
- Risk Assessment Guide at www.societyforscience.org/isef/rulesandguidelines
- The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. http://www.societyforscience.org/isef/rulesandguidelines
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/31/18</td>
<td>Science Fair Contact Meeting</td>
<td>Ralph Williams</td>
</tr>
<tr>
<td></td>
<td>2:00 p.m. - 4:00 p.m.</td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td>Brevard Research Rules! A Science Fair Conference for Gr. 5th-8th</td>
<td>ESF</td>
</tr>
<tr>
<td>9/22/18</td>
<td>8:30 a.m. - 12:00 p.m.</td>
<td></td>
</tr>
<tr>
<td>11/2/18</td>
<td>$30.00 Science Registration Fee Due</td>
<td>Ralph Williams</td>
</tr>
<tr>
<td></td>
<td>Checks made Payable to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ralph Williams</td>
<td></td>
</tr>
<tr>
<td>12/7/18</td>
<td>Science Fair Contact Meeting</td>
<td>Enterprise</td>
</tr>
<tr>
<td></td>
<td>2:00 p.m. - 4:00 p.m.</td>
<td></td>
</tr>
<tr>
<td>1/18/19</td>
<td>Deadline for School Application forms to be emailed to:</td>
<td>Enterprise</td>
</tr>
<tr>
<td></td>
<td>Jackie Herold at Enterprise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>herold.jaclyn@brevardschools.org</td>
<td></td>
</tr>
<tr>
<td>2/26/19 & 2/27/19</td>
<td>Northern Division Art and Science Fair</td>
<td>Space Coast Jr./Sr.</td>
</tr>
<tr>
<td>2/26/19</td>
<td>Science Fair Registration & Set-up</td>
<td>Space Coast Jr./Sr.</td>
</tr>
<tr>
<td></td>
<td>12:00 p.m. - 4:00 p.m.</td>
<td>Gym</td>
</tr>
<tr>
<td>2/27/19</td>
<td>Project Judging/Student Interviews</td>
<td>Space Coast Jr./Sr.</td>
</tr>
<tr>
<td></td>
<td>Judges’ Breakfast & Luncheon</td>
<td>Gym & Multipurpose Room</td>
</tr>
<tr>
<td></td>
<td>7:30 a.m. - 1:00 p.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays Open to Public</td>
<td>Space Coast Jr./Sr.</td>
</tr>
<tr>
<td></td>
<td>5:30 p.m. - 6:45 p.m.</td>
<td>Gym</td>
</tr>
<tr>
<td></td>
<td>Discovery Division Art and Science Fair Awards Ceremony</td>
<td>Space Coast Jr./Sr.</td>
</tr>
<tr>
<td></td>
<td>6:00 p.m. - 6:30 p.m.</td>
<td>Cafeteria</td>
</tr>
<tr>
<td></td>
<td>Columbia Division Art and Science Fair Awards Ceremony</td>
<td>Space Coast Jr./Sr.</td>
</tr>
<tr>
<td></td>
<td>6:45 p.m. - 7:15 p.m.</td>
<td>Cafeteria</td>
</tr>
<tr>
<td></td>
<td>Fair Closes</td>
<td>Space Coast Jr./Sr.</td>
</tr>
<tr>
<td></td>
<td>6:45 p.m.</td>
<td>Gym</td>
</tr>
</tbody>
</table>

Please Note: School personnel may remove their projects beginning at 6:45 p.m.
Student Interview Times

For transportation planning purposes, the following schedule will apply regarding student project interview/judging at the Northern Division Science Fair at Space Coast Jr./Sr. High School on February 27, 2019.

<table>
<thead>
<tr>
<th>9:30 a.m. - 10:30 a.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apollo</td>
</tr>
<tr>
<td>Atlantis</td>
</tr>
<tr>
<td>Cambridge</td>
</tr>
<tr>
<td>Challenger 7</td>
</tr>
<tr>
<td>Coquina</td>
</tr>
<tr>
<td>Endeavour</td>
</tr>
<tr>
<td>Enterprise</td>
</tr>
<tr>
<td>Fairglen</td>
</tr>
<tr>
<td>Golfview</td>
</tr>
<tr>
<td>Imperial Estates</td>
</tr>
<tr>
<td>Mims</td>
</tr>
<tr>
<td>Oak Park</td>
</tr>
<tr>
<td>Pinewood</td>
</tr>
<tr>
<td>Ralph Williams</td>
</tr>
<tr>
<td>Saturn</td>
</tr>
<tr>
<td>South Lake</td>
</tr>
<tr>
<td>Sculptor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11:00 a.m. - 12:00 p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
</tr>
<tr>
<td>Audubon</td>
</tr>
<tr>
<td>Cape View</td>
</tr>
<tr>
<td>Divine Mercy</td>
</tr>
<tr>
<td>Emma Jewel Charter</td>
</tr>
<tr>
<td>Freedom 7</td>
</tr>
<tr>
<td>Lewis Carroll</td>
</tr>
<tr>
<td>Manatee</td>
</tr>
<tr>
<td>MILA</td>
</tr>
<tr>
<td>Our Savior</td>
</tr>
<tr>
<td>R.L. Stevenson</td>
</tr>
<tr>
<td>Roosevelt</td>
</tr>
<tr>
<td>St. Mark’s</td>
</tr>
<tr>
<td>St. Teresa</td>
</tr>
<tr>
<td>Tropical</td>
</tr>
<tr>
<td>Viera Charter</td>
</tr>
</tbody>
</table>
Northern Division Science Fair Guidelines and Requirements for Teachers

The following guidelines will be used in the process of selecting and exhibiting projects for the Northern Division Science Fair. For the sake of compatibility, it is suggested that school fairs follow Northern Division Fair guidelines.

Project/Display Eligibility

1. Students’ projects, research plans, and testing procedures MUST be reviewed and approved by their teacher, with support from the school’s Science Fair Committee when needed, before any testing begins.
 a. Each school should have a Science Fair Committee in place that can support the classroom teacher with advice and guidance.
 b. Students designing their own experiments for science projects will need guidance to conduct safe and ethical science. An “Elementary Science Project Research Plan and Approval Form” template is provided in this Science Fair Handbook to assist with this. This approval form indicates what additional forms may need to be used.
 i. Teachers, students and parents should work together to review and complete this form, so that everyone has a complete understanding of the intended project and is aware of any potentially dangerous or unethical situations before the student begins any testing so that the appropriate changes can be made.
 ii. Students should always follow approved procedures and never perform unauthorized experiments.
 c. The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines.

2. First place winners from Elementary School Fairs are eligible to enter the Division Fairs. Home Schooled or Virtual students are to submit their entries to the public school where the child would attend according to that school’s guidelines and timelines. The home school or virtual entry should contact the public school about their fair and then be judged along with all the other entries from the public school. If selected, that entry would attend the Division Fair as part of the public school science team. If a first place school winner moves, the administrator from that school works with the parents to decide whether that student will still represent the school at the District Fair, or whether another student would be identified.

3. An additional “School Choice” entrant can be designated (optional) by the School Fair Director. (1 total per school) Because of space limitations, this entrant MUST be an individual project, not a team project. If can be from any grade level (4-6).

4. Exhibits will be limited to those projects, which can be classified under Biological, Physical, or Environmental sciences in grades 4 through 6. Projects in non-science fields are ineligible.

Projects that relate to more than one category should be entered in the category of major emphasis.
5. In the **Team Project** category, each school will be permitted to enter two team projects – (2-3 students). The school’s selection of the competing team projects **MUST be from grades 4 through 6**.

The above categories are defined as follows:

BIOLOGICAL: Projects that focus on the vital processes of living organisms, plants, microorganisms, and animals (including humans), and how these processes are affected as a result of controlling a variable. Processes may include but not be limited to such functions as growth, maintenance, breathing rate, pulse, learning, memory, vision, etc. Animals/insects MUST be treated humanely.

PHYSICAL: Projects related to the natural sciences such as physics, chemistry, as well as earth and space sciences, which focus primarily on non-living materials. Topics may include but are not to be limited to: properties of matter, physical and chemical changes, various forms of energy, forces, motion, processes that shape the Earth, weather, etc.

ENVIRONMENTAL: Projects that focus on interactions with the natural surroundings. Projects include the relationships of energy, population, pollution, resource allocation and depletion, conservation, transportation, and technology to the total environment. Topics may include but are not limited to: reusing, recycling, or reducing use of our natural resources; ways that technology impacts our resources; ways that human interactions negatively impact the quality of life by pollution, etc.

TEAM PROJECT: A study conducted by **two or three students (grades 4, 5 or 6 only)** in any scientific discipline. Beginning in 2019-2020 school year, team projects will be judged in their chosen category with their grade level (i.e., 2 fifth graders collaborating on their project in the Physical Science category.)

Note: Any project that results in microbes (including mold) being collected, isolated, and/or cultured - even if inadvertently/unintentional - will require copies of the appropriate forms (Qualified Scientist, Designated Supervisor and BSL-1 checklist) to be a part of student’s project display, or daily log, for judges’ review. This is to ensure the safety of the students and others. The original forms must be kept at school.

6. Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) done by elementary students is potentially dangerous and **MUST** only be done with expert and careful supervision.
Samples/organisms **MUST NOT** be collected, isolated and/or cultured from the environment as they are potentially pathogenic. This includes, but is not limited to projects involving blood, animal waste, soil, pond water, and culturing swabs. Instead, all microbial samples/organisms **MUST** be obtained from a science supplier/company and are limited to **Biosafety Level 1 (BSL-1)**.

The BSL-1 Checklist **MUST** be used to guide safe practices such as sealing Petri dishes, proper disposal, etc. A Qualified Scientist Form and a Designated Supervisor Form are required to ensure the safety of the student and others. Please retain a copy of these forms at your building. The original forms must be included with the project to be viewed at check-in and by judges. Refer to Centers for Disease Control and Prevention http://www.cdc.gov/.

Microbiology projects are potentially dangerous and should be discouraged in most cases. Directors ask that schools be accountable in this area and exclude projects where proper safety procedures and forms were not followed. A project that is not qualified **MUST NOT** be submitted to the Division Fair.

7. Projects involving invertebrates (e.g. worms, daphnia, fruit flies, snails, insects, etc.) **MUST** have a clear purpose that has scientific significance, invertebrates **MUST** be treated humanely, an intentionally harming them without a scientific purpose **MUST NOT** occur.

8. Projects involving non-human vertebrates (including embryos, eggs, tadpoles, and other early life cycle stages of vertebrates) are held to a higher standard than projects testing invertebrates. Vertebrates **MUST** be treated humanely, and if a project could cause pain or distress to the vertebrate the student will need to design a new question and procedures. When non-human vertebrate animals are tested and their environment is changed, a **Qualified Scientist Form** and **Designated Supervisor Form** are required to ensure humane treatment. Forms will be retained at the school level but copies **MUST** be included with the project to be viewed at check-in and by judges. A project with **ANY DEATHS** in any vertebrate group or subgroup is **NOT PERMITTED** to be entered into the Science Fair even if the deaths were unintentional.

9. In some cases, students may choose to use human subjects for their experiments. However, when an experiment could cause more than minimal risks to the human subject, the subjects (and their parents, when a minor) **MUST** be informed of, and consent to, the testing procedures before the experimentation begins. In these cases, use of the **Qualified Scientist Form**, **Designated Supervisor Form**, **Informed Consent Form**, and **Human Subject Verification of Informed Consent Form** is required to ensure the safety of the human subjects. Forms will be retained at the school level but, with the exception of the Informed Consent Forms, copies **MUST** be included with the project to be viewed at check-in and by judges. For more details, see the online Risk Assessment Guide at www.societyforscience.org/isef/rulesandguidelines.
10. Project involving **soil and water** are allowed as long as the proper safety precautions (safety glasses, gloves, and adult supervision) are followed. Water and soil samples may be collected from the environment only if water/soil quality (dissolved O\textsubscript{2}, nitrates, phosphates, pH, salinity, turbidity, etc.) is the purpose of testing. **Plants or organisms can NOT be grown in water or soil that was collected from the environment.** A Designated Supervisor form is required.

11. **Students** are never allowed to do projects that are clearly dangerous.
 a. Testing involving firearms, knives or other items that could be considered weapons in a school setting (e.g. a paintball gun, BB gun, etc.) is not permitted.
 b. Testing involving fireworks or other explosives is not permitted.
 c. Testing involving controlled substances, prescription drugs, alcohol, and tobacco is **not allowed**.
 d. The use of any potentially hazardous chemicals, devices, and activities require direct supervision by a Designated Supervisor.
 e. Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) is potentially dangerous and **MUST** only be done with expert and careful supervision.
 f. No mold projects are permitted.

12. Each project will be classified by grade level in one of the first three categories listed above. Team projects are not categorized by discipline or by grade level.

13. Entered projects **MUST** be completed during the present school year.

14. Exhibits should be constructed and developed by the students entering them. Help **MUST** be limited to supervision and guidance.

15. To be eligible for awards, students are required to meet all grade level requirements:
 - **Grades 4-6 and Team Requirements:** **Daily Log, Backboard, Summary, and Bibliography.** Daily Log should be handwritten. Summary and Bibliography can be handwritten or typed. **Note:** Only one daily log is required for Team projects, but one per team member is also allowed.

Registration Requirements

1. Schools should email School Application Forms no later than **January 18, 2019** to Jackie Herold, Enterprise Elementary, herold.jaclyn@brevardschools.org.

2. Displays **MUST** be registered by school representative at Space Coast Jr./Sr. High School between the hours of 12:00 p.m. and 4:00 p.m. on **February 26, 2019**.
Display Requirements

1. Displays MUST meet all size requirements. Exhibits will be confined to table space which MUST not exceed 3 feet (91 cm) from side to side, 5 feet (152 cm) high, and 30 inches (76 cm) front to back. Headers may be used if they fit within these size requirements. Projects larger than size limitations will be disqualified until changes are completed.

2. No display items in front of exhibit/blackboard. Only Research and/or Daily Logs. Display items cannot be brought in for judging either. Photos, charts, graphs and student knowledge will suffice in communicating the project to others.
 - Backboards MUST be able to fold flat. Only “2 dimensional” paper, photos, pictures, lettering, designs, and borders should be on the backboard. No 3D materials should be on the backboard other than scrapbook-type foam lettering.
 - The following may not be exhibited on the exhibit/backboard:
 - Live animals, preserved animal bones, feathers or other parts
 - Live or dead plants (flowers, fruits/vegetables)
 - Soil, sand, rocks, seashells, chemicals, liquids, tobacco products
 - Sharp objects (metal cans, nails, screws, pins, glass, etc.)
 - Any other potentially dangerous substance or item that may be hazardous in a public display

3. Research involving live specimens should be displayed through the use of drawings, charts, photographs, graphs, or original models.

4. Electricity will not be provided.

5. The Committee reserves the right to:
 - Refuse an exhibit that is considered unsafe.
 - Disqualify an exhibit which may bring discredit to the Fair.
 - Refuse a project that did not treat invertebrates or vertebrates humanely.
 - Refuse a project that did not involve the proper protocol and/or completed forms.
 - Refuse a project with ANY DEATHS in any vertebrate group or subgroup. A project with these results is not permitted to be entered into the Science Fair, even if the deaths were unintentional.
 - Projects not following proper procedures may be excluded from the Fair and may not be eligible for awards.

6. Students MAY use photographs that include their faces. Photo credit must be provided. One statement such as e.g. “All photographs taken by parents of …” or “All photographs taken by …” will suffice for documentation. Last name not included.

7. Students’ last names or school names MUST not be visible on either side of the display or on the Daily Log. Project numbers will identify participants.

8. Students’ last names or school names MUST not be visible on clothing during judging.

9. Items used from the Internet must be credited. (Articles, graphs, charts, pictures, etc.)
Display Setup

1. After project registration is completed, the Fair Committee will set up projects in assigned spaces. Teachers and/or parents may register for students. Due to the time constraints and influx of people, this is not the time for public viewing of the projects. Only complete projects will be accepted. School personnel should not leave until they have been told officially that all projects are checked in.

2. The Fair Committee will affix a Setup Checklist to the back of each display. Items on the checklist, which will be reviewed by the Fair Committee, include the following information:

 - Completed grade level requirements
 - Display meets size requirements
 - Display meets safety requirements
 - School or student name not visible on front or back of display or on Daily Log
 - Project number and area number attached to front of display (on color-coded dots)
 - Completed Qualified Scientist, Designated Supervisor, and other forms are on file at the school for projects that require them. Copies MUST be included with certain projects to be viewed at check-in by judges.

3. The Fair Committee reserves the right to move projects in order to accommodate participants in regards to space and safety.

4. Entrants should make every effort to secure his/her/their exhibit. The Fair Committee will safeguard all projects, but the responsibility for the security of displays rests on the participants.
Judging Process

1. Students will arrive for project judging at assigned times.

2. Immediately prior to entering the judging area, the students will receive a judging orientation.

3. The judging process will include an interview with judges for each entrant at his or her displays. The judging process is a positive experience for all students, and judges understand that all work has value.

4. Other than the team division, projects are compared only to others in the same category and same grade level.

5. Science projects should involve experimental testing of a hypothesis (not just gadgeteering or “cookbook” science experiments).

6. Elementary students’ work should be appropriate to their grade level.

7. Parents and teachers will not be permitted in the judging area (gym floor) while interviews and judging are in progress. Schools should limit the number of adults transporting – due to parking and distraction issues. Siblings and additional family members should not attend judging.

8. The judges will dismiss students individually from the judging area after completion of judging process.

9. The decision of the judges is final.

10. Students should be advised that all judges’ information regarding decisions, notes, point awards, etc. is strictly confidential.

11. Schools will be given a schedule of interview times.

12. Teachers should make students aware of criteria used for judging.
Judging Criteria

The student’s use and understanding of the science processes as well as knowledge gained through their research are the key factors in determining the quality of science projects. The physical display is secondary. Each project should involve experimentation (not just gadgets or model building). Creative ability, thoroughness, skill, and clarity of presentation will also be considered. An elementary child’s work should be appropriate for his/her grade level. Judges are reminded to make the interview process a positive experience and to reinforce the notion that all work has value. A website that many students find helpful in preparing for judging is Science Buddies at http://www.sciencebuddies.org/. The following may be helpful as suggested criteria for judging:

Scientific Thought
- Is the problem clearly stated?
- Was there a detailed procedure for the solution?
- Were the results measurable?
- Were the variables recognized and defined?
- Was the number of trials or the number of subjects tested sufficient?
- Was there adequate data to support the conclusions?

Knowledge Gained
- What knowledge has the student gained as a result of doing this project?
- Does the student understand the basic science related to his/her project?
- What would the student do differently if repeating the project?
- What were the most interesting and exciting things about the project?
- How can this project be applied to a “real life” situation?
- What is the practical application?

Creative Ability
- Does the project show creative ability and originality in?
 - The question asked?
 - The approach to solving the problem?
 - The analysis of the data?
 - The use of equipment?
 - The construction/design of the experiment?

Obviously the elementary child would not incorporate all of the above in his/her project, nor to any depth. Try to ascertain the kind of assistance received by the child. Don’t penalize for getting help from others, but try to determine what the student has contributed.

EXAMPLE: Did he/she/they get the idea from a book or did he/she/they develop the idea as a result of reading. The child’s idea is considered more creative. Collections are not creative unless they are used to support an investigation and help to answer a question in a creative way. Engineering should not be limited to gadgets, but a genuine contribution to ways of solving problems.
Thoroughness
- Was the project carried to completion?
- How complete are notes and entries in the Daily Log?
- How much time was spent on the project?

Skill
- Does the student have all the skills to do the work?
- What kind of assistance was given?

Clarity
- Is he/she/they able to explain the purpose, procedure, and conclusion clearly?
- Has the child expressed him/herself well in written material and interview?
- Are ideas clearly presented in the display?
- Is he/she/they able to present findings clearly so that others can easily understand?

IMPORTANT: ALL JUDGES’ INFORMATION REGARDING DECISIONS, NOTES, POINT AWARDS IS STRICTLY CONFIDENTIAL. ALL JUDGES’ DECISIONS ARE FINAL.

Awards
1. To be eligible for awards, entrants MUST have an approved Setup Checklist.

2. Entrants MUST meet all grade level and safety requirements to be eligible for awards.

3. Discovery and Columbia Divisions will receive separate awards for their area.

4. Awards will be given for first place through fifth place in each of the four categories by grade level (team projects will not receive awards by grade level).

5. A “Harris Best of Show” and a “Best of Show Runner-Up” award will be given to the outstanding projects in physical, biological, environmental and team projects in the Discovery and Columbia Divisions.

6. The judges may give one optional “Honorable Mention” award in their divisions, as they deem appropriate.

7. All entrants will receive a “Certificate of Merit”.

8. Every attempt is made to notify schools or winners before afternoon dismissal. Unfortunately, there is a short turnaround time after judging is completed and to avoid errors the process can’t be rushed.

Display Removal
- Schools must communicate to students and parents that a school representative will be responsible for removal of projects after the awards program.
- The Fair Committee will not be responsible for any displays remaining after the Fair closes.
Summary of School Responsibilities for Northern Division Fair

Each school is responsible to:

1. Teach and model scientific inquiry and problem solving in the classroom before science projects are assigned.

2. Assign science projects in a timely manner to allow sufficient time for completion.

3. Provide adequate supervisory and instructional support to participating students.

4. Designate person(s) to attend Division Science Fair Committee meetings and to remove projects at the designated time at the conclusion of the Fair.

5. Provide student handbooks to participating students.

6. Complete School Fair in time to meet District Fair requirements.

7. Review every project before it is sent to the Northern Division Science Fair to ensure it is within the guidelines established for size, project safety, humane treatment of animals/insects and proper use and display of all necessary forms when applicable (Qualified Scientist, Designated Supervisor, etc.).

8. Be accountable in this area and exclude projects where proper safety procedures and forms were not followed. A project that is not “qualified” must not be submitted to the Division Fair.

9. Insure that each project satisfies all grade level requirements.

10. Email School Application Form to appropriate Division Fair contact person before January 18, 2019. The School Application Form includes a list of first place winners in each category by grade level. Each school may include one school choice entrant if desired (1 total) and/or two team entries (also optional). School forms should be emailed.

11. Attach color-coded project numbers (to be assigned to Jackie Herold, Enterprise Elementary, herold.jaclyn@brevardschools.org and provided by Fair Committee to each school) to designated place on the front of the student display boards.

12. Deliver projects to Space Coast Jr./Sr. High School between the hours of 12:00 p.m. to 4:00 p.m. on February 26, 2019, for registration and setup.

13. Set up projects in assigned space according to size and safety guidelines.
14. Insure that students arrive on time for project judging and interviews. Limit the number of adults transporting students to judging. It is not appropriate for siblings and other family members to attend judging. Attendees, noise, cameras, etc. are very distracting to students.

15. Type its own certificates for participation for the Division Fair.

16. Provide each student with a name tag that designates student’s first name only to be worn during judging. The school is responsible for providing this.

17. Keep on file completed Qualified Scientist, Designated Supervisor and other forms from students who did projects involving microbes, animal/testing, etc.
School Application Form *
List of School Participants for Northern Division Science Fair
Use the electronic version of this form that will be emailed to schools by Jackie Herold. Please type and spell names correctly – this is how they will appear on certificates.

School Name _____________________________________ Division________________________

BIOLOGICAL DIVISION WINNERS:

Grade 4_______________________ Project Number__________Title_________________________

Grade 5_______________________ Project Number__________Title_________________________

Grade 6_______________________ Project Number__________Title_________________________

PHYSICAL DIVISION WINNERS:

Grade 4_______________________ Project Number__________Title_________________________

Grade 5_______________________ Project Number__________Title_________________________

Grade 6_______________________ Project Number__________Title_________________________

ENVIRONMENTAL DIVISION WINNERS:

Grade 4_______________________ Project Number__________Title_________________________

Grade 5_______________________ Project Number__________Title_________________________

Grade 6_______________________ Project Number__________Title_________________________

SCHOOL CHOICE SELECTION (OPTIONAL – Cannot be a team project.)

Name________________________ Grade_______ Division_________________________

Project Number__________ Title________________________

TEAM SELECTION (OPTIONAL)

Names__

Project Number__________ Title________________________

Names__

Project Number__________ Title________________________

*Please type names of students and email form no later than January 18, 2019, to: Jackie Herold, herold.jaclyn@brevardschools.org

REMINDER: Schools are responsible for keeping on file a copy of completed Qualified Scientist, Designated Supervisor, and other forms from students who did microbiology, animal testing, or other potentially dangerous projects. **Copies MUST be included with projects to be viewed at check-in and by judges.** Your Administrator name below verifies the above and that any animals/insects used were treated humanely.

__

Name of Administrator Who Verified This Form

17
“Rainbow and Rainy Day”
Natalie Pate
Grade K - MILA Elementary
Art Teacher – Tricia Audet-Henderson
Student Handbook

Elementary Art and Science Fair Divisions

<table>
<thead>
<tr>
<th>Discovery Division</th>
<th>Columbia Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>Apollo</td>
</tr>
<tr>
<td>Cambridge</td>
<td>Atlantis</td>
</tr>
<tr>
<td>Cape View</td>
<td>Audubon</td>
</tr>
<tr>
<td>Challenger 7</td>
<td>Coquina</td>
</tr>
<tr>
<td>Divine Mercy</td>
<td>Enterprise</td>
</tr>
<tr>
<td>Emma Jewel Charter</td>
<td>Imperial Estates</td>
</tr>
<tr>
<td>Endeavour</td>
<td>Lewis Carroll</td>
</tr>
<tr>
<td>Fairglen</td>
<td>MILA</td>
</tr>
<tr>
<td>Freedom 7</td>
<td>Mims</td>
</tr>
<tr>
<td>Golfview</td>
<td>Oak Park</td>
</tr>
<tr>
<td>Manatee</td>
<td>Our Saviour</td>
</tr>
<tr>
<td>Ralph Williams</td>
<td>Pinewood</td>
</tr>
<tr>
<td>R. L. Stevenson</td>
<td>St. Teresa</td>
</tr>
<tr>
<td>Roosevelt</td>
<td>Sculptor Charter</td>
</tr>
<tr>
<td>St. Mark’s</td>
<td>South Lake</td>
</tr>
<tr>
<td>Saturn</td>
<td>Tropical</td>
</tr>
<tr>
<td>Viera Charter</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Saturday 9/22/18</td>
<td>Brevard Research Rules!</td>
</tr>
<tr>
<td></td>
<td>A Science Fair Conference for Gr. 5th-8th</td>
</tr>
<tr>
<td></td>
<td>8:30 a.m. - 12:00 p.m.</td>
</tr>
<tr>
<td>Tuesday 2/26/19 &</td>
<td>Northern Division Art and Science Fair</td>
</tr>
<tr>
<td>Wednesday 2/27/19</td>
<td></td>
</tr>
<tr>
<td>Tuesday 2/26/19</td>
<td>Science Fair Registration & Set-up</td>
</tr>
<tr>
<td></td>
<td>12:00 p.m. - 4:00 p.m.</td>
</tr>
<tr>
<td>Wednesday 2/27/19</td>
<td>Project Judging/Student Interviews</td>
</tr>
<tr>
<td></td>
<td>9:30 a.m. - 1:00 p.m.</td>
</tr>
<tr>
<td></td>
<td>Displays Open to Public</td>
</tr>
<tr>
<td></td>
<td>5:30 p.m. - 6:45 p.m.</td>
</tr>
<tr>
<td></td>
<td>Discovery Division Art and Science Fair Awards Ceremony</td>
</tr>
<tr>
<td></td>
<td>6:00 p.m. - 6:30 p.m.</td>
</tr>
<tr>
<td></td>
<td>Columbia Division Art and Science Fair Awards Ceremony</td>
</tr>
<tr>
<td></td>
<td>6:45 p.m. - 7:15 p.m.</td>
</tr>
<tr>
<td></td>
<td>Fair Closes</td>
</tr>
<tr>
<td></td>
<td>6:45 p.m.</td>
</tr>
</tbody>
</table>

NOTES:
All projects should be viewed before 6:45 p.m. as they will be removed from the Gym.
*School personnel may remove their projects **beginning at 6:45 p.m.***
1. **Get an Idea for Your Project**
 Researching your favorite science topics can help you find a question that interests you. You might want to look at a list of science fair categories to help decide. Talk over ideas with your family, teacher, or friends. Use TV commercials, magazines, newspapers, hobbies, sports, or books to get more ideas. Think about problems around the house that you would like to solve. You can even test household items. Science buddies at http://www.sciencebuddies.org/ has resources for science fair project ideas, answers, and tools. Taking their “Topic Selection Wizard: Science Interest Survey” can help students understand what areas of science are most interesting to them, resulting in motivation and success in doing a high-quality science project.

2. **Start a Daily Log**
 A detailed Daily Log with accurate records allow scientists to describe their investigation so others can repeat it and try to replicate the results. Divide it into two sections: “Daily Work” and “Data”. A bound notebook (such as a “composition notebook”) is the best for a Daily Log because it is a “legal document”. Don’t tear pages out even if you make mistakes.

 - In the **Daily Work** section write down all things you do or think about concerning your project each day – like a diary. Write a **date for each entry** to show the day to day record of your progress while doing your project. Give details. Include your procedure, research, diagrams, changes to the experiment, bibliography, etc.

 - In the **Data** section make charts **before** you start testing. Record all measurements, readings, etc. in these charts **in ink as you measure them** during your testing. If you make a mistake draw a line through it and rewrite it. Do not erase or “white out.” Data should not be recorded by typing. Record any and all other observations you make while testing also. A good scientist keeps careful, detailed records of findings and test results. Sometimes it’s the unexpected observation that leads to a new discovery.

3. **Do a Search for Background Information**
 Every scientist spends time getting background information. Use the library; write or call experts; write to companies and organizations; use the Internet*. Start keeping a bibliography with complete information on every source you used or tried to get. Good research will help you **become an expert** on your topic and refine your question. As an expert, you will be able to make better hypotheses, plan better testing, and draw better conclusions.
4. **State the Problem in a Question Form**
 This part (often used as a title) asks what you are trying to find or show in your investigation. Make sure your question or problem is one that can be solved by testing. It MUST involve more than a demonstration, survey or a collection. Don’t confuse the use of “affect” (a verb) with “effect” (a noun).

5. **State Your Hypothesis**
 The hypothesis is a prediction of what you think will happen during your experimentation. Use background information to help you prepare this prediction and to explain it. Be sure to write your hypothesis before you start your experiment. Word it as an “If ...then...” statement. The results of the test you do later do not have to support the hypothesis in order for the experiment to be a success. It is important to note that your hypothesis will NOT be “proved” or “disproved”. The words to use are that it is “supported” or it is “not supported”.

6. **Design the Experiment**
 Determine the procedure that you will follow to test your hypothesis and record it in your Daily Log. The procedure should explain the steps to be followed in order to find the answer to your question or problem. Think about necessary safety precautions that will be taken. Make a complete list in your Daily Log of all the materials you will need.

 - Identify the conditions (also called Constants, Controls, or Controlled Variables) that will be kept the same during the experiment. These will help you run a fair, scientific test that will give you valid results.

 - Identify the one factor you will change (on purpose) to get a result. This is called the Independent variable.

 - Identify how your results will be measured. This is called the Dependent variable. It’s important to have results that can be measured. Use measuring tools with metric units whenever possible.

 - It is very important to have a Control Group. This is the group of subjects that is treated in the “normal” way so you can compare them to the Experimental Group (the group of subjects that have the one factor changed).

 A good procedure is very detailed – like good recipe. This makes it easy for other scientists to duplicate your experiment so they can verify your results.

7. **Conduct the Experiment**
 Follow your procedure carefully to ensure fair, scientific testing. While testing, record all data, in ink, directly into your Daily Log. Don’t write measurements on a piece of paper and then copy them into your log – this can lead to errors. Be accurate and exact as you observe, measure, describe, count, or photograph. Work safely. If necessary, make changes in your procedure and document them in your Daily Log.
8. **Repeat the Procedure**
 The results will be more valid, and convincing, if you **repeat the experiment as many times as possible**. For example, an experiment that uses ten plants will give more valid results than one that tested only one or two plants. Testing and measuring the distance a car rolled down a ramp twenty times would be much more valid than testing it only three times. Understand that an experiment MUST be repeated many times and yield consistent results before the results can be accepted. Repeat at least ten (10) times.

9. **Analyze the Data (Results)**
 Look at the measurements you recorded in your Daily Log closely. Think about the data and decide what the results mean. Try to find explanations for your observations. If possible, examine your results mathematically using percentages, mean, median, range, and modes. Be sure to know the meanings of these words if you use them. Construct graphs or tables that will go on your backboard to show the results more clearly. Charts and graphs can help us understand patterns of change. The data will help you decide whether your hypothesis is supported or should be rejected. Identify data that is contradictory or unusual and try to explain it in your conclusions.

10. **Make Conclusions**
 Conclusions are statements telling what you found out or learned during your investigation. This is a very important part of your project since you probably learned a lot. They are based on the results of your experiment and your hypothesis. Explain how the data you collected “supports your hypothesis” if it does. Remember that you won’t **prove** your hypothesis. A hypothesis isn’t proven until many scientists repeat the same experiment many times and get similar results. If the data doesn’t **support your hypothesis**, explain why you “reject your hypothesis”. Explain what further testing might be done to better answer your original question. Through the use of science processes and knowledge, people can solve problems, make decisions, and form new ideas. Tell how people might apply your findings to everyday life. Can you explain any unusual findings from your testing?

11. **Communicate Your Results in a Summary or Abstract**
 Scientists share their findings with other scientists. Write a **short, one-page, five-paragraph** Summary (it is also called an Abstract) that explains the most important parts of your project. An easy format to use is to **write one paragraph that summarizes each** of the following:

 - **Problem or Question.** State it and explain why you chose it.
 - **Hypothesis.** Tell your prediction and explain why you thought it would happen.
• **Testing.** Give a general overview of your procedure telling how you used fair and scientific testing. Tell about your variables, how you had repeated trials or multiple subjects, testing time, and if you had a control group.

• **Results.** Summarize your data by telling your final measurements, totals, or averages. Share a few of the most important observations you made. Compare your control group to your experimental group – did one do better than the other?

• **Conclusions.** State whether your hypothesis was supported by the data you collected or not. Tell the most important thing you learned. If the project was to be repeated what changes would you make and why?

Practice an oral presentation also. Be an expert on all parts of your project so you’ll be prepared to answer an interviewer’s or a classmate’s question.

12. Construct a Display that Explains Your Project

Even though science does not always follow a rigidly defined method (“the scientific method”), it does involve important processes such as observation and gathering or empirical evidence. Including the parts below is an effective way to organize your presentation and to communicate information about your project to others:

- **PROBLEM or QUESTION** – Statement of problem in question form.
- **HYPOTHESIS** – Your prediction of what will happen and you’re reasoning.
- **MATERIALS** – A complete list of materials and equipment you used.
- **PROCEDURE** – Step-by-step explanation of how you tested.
- **DATA or RESULTS** – Shows the measurements you collected while testing. Include measurements, graphs, tables, or charts. Diagrams or photographs can also be displayed.
- **CONCLUSION** – Statements relating your data to your hypothesis to tell what you learned by your testing.

Display your Daily Log, Summary or Abstract, and Bibliography on the table in front of your backboard.

13. Be ready to answer questions that judges often ask.

Below are sample questions that judges often ask students during judging interviews. It is a good idea to practice answering the following questions before meeting the judges:

- Can you explain or describe your project?
- What procedures did you follow that made sure it was a fair and scientific test? Did you repeat you’re testing – at least ten (10) times?
- Tell me what happened in your control group.
- Where, or how, did you get the idea for your project?
- What kind of help did you receive while working on your project?
- What are the most important things you have learned by doing your project?
- If you had more time, what things would you do to change or improve your project?
- How much time did you spend working on your project?
- How can you apply what you learned to “real life” situations?
With parent supervision, students can visit Internet sites for more information about science projects:

- Brevard’s Elementary Science website: http://tinyurl.com/BPSelementaryscience
- ScienceBuddies http://www.sciencebuddies.org/
- Centers for Disease Control and Prevention http://www.cdc.gov/
- Risk Assessment Guide at www.societyforscience.org/isef/rulesandguidelines
- Intel International Science and Engineering Fair
 http://www.societyforscience.org/isef/rulesandguidelines
Wording of Science Fair “Problems”

A science project “Problem” should be written in a question form that can be solved by testing.

Two common formats used are:

- “How will salt affect the boiling temperature of liquids?”
- “What are the effects of water pollution on the growth of sea grass?”

Be careful when using the words “affect” and “effect” because they are often confused and misused.

“Affect” is a verb that means, “to influence”. In the example above the student is asking if salt will “influence” or “affect the boiling temperature.

“Effect” is usually used as a noun that means “a result, or something brought about by a cause.” In the second example above the student is asking what the “results” or “effects” will be when she tests water pollution on sea grass.

“Effective” is an adjective meaning “producing an expected result.” It is sometimes misused also. A correct example would be “Which of the tested air filtering systems is the most effective?”

Some other formats that can be used are:

- “What happens to the drag and stability of a boat when the pontoon design is changed?”
- “Is there a relationship between light color and the growth of bean plants?”
- “Which of the tested materials provides the best insulation?”

The way the question is worded should be chosen carefully so it expresses clearly what you are trying to find out.

For example:

“Is there a relationship between the cost of different brands of disposable diapers and how absorbent they are?” is a better question that “How does the cost of diapers affect their absorbency?”

The second question indicates that the cost is what makes one diaper more absorbent than another. We know the absorbency is actually related to the materials the diapers are made from, not whether the store has marked the price of them high or low.
Northern Division Science Fair Guidelines and Requirements for Students

The following guidelines will be used in the process of selecting and exhibiting projects for the Northern Division Science Fair.

Project/Display Eligibility

1. Students’ projects, research plans, and testing procedures MUST be reviewed and approved by their teacher, with support from the school’s Science Fair Committee when needed, before any testing begins.
 a. Students designing their own experiments for science projects will need guidance to conduct safe and ethical science. An “Elementary Science Project Research Plan and Approval Form” template is provided in this Science Fair Handbook to assist with this. This approval form indicates what additional forms may need to be used.
 i. Teachers, students and parents should work together to review and complete this form, so that everyone has a complete understanding of the intended project and is aware of any potentially dangerous or unethical situations before the student begins any testing so that the appropriate changes can be made.
 ii. Students should always follow approved procedures and never perform unauthorized experiments.
 b. The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines.

2. First place winners from Elementary School Fairs are eligible to enter the Division Fairs. Home Schooled or Virtual students are to submit their entries to the public school where the child would attend according to that school’s guidelines and timelines. The home school or virtual entry should contact the public school about their fair and then be judged along with all the other entries from the public school. If selected, that entry would attend the Division Fair as part of the public school science team. If a first place school winner moves, the administrator from that school works with the parents to decide whether that student will still represent the school at the District Fair, or whether another student would be identified.

3. An additional “School Choice” entrant can be designated (optional) by the School Fair Director. (1 total per school) Because of space limitations this entrant MUST be an individual project, not a team project. If can be from any grade level (4-6).

4. Exhibits will be limited to those projects, which can be classified under Biological, Physical, or Environmental sciences in grades 4 through 6. Projects in non-science fields are ineligible. Projects that relate to more than one category should be entered in the category of major emphasis.

5. In the Team Project category, each school will be permitted to enter two team projects – (2-3 students). The school’s selection of the competing team projects MUST be from grades 4 through 6.
The above categories are defined as follows:

BIOLOGICAL: Projects that focus on the vital processes of living organisms, plants, microorganisms, and animals (including humans), and how these processes are affected as a result of controlling a variable. Processes may include but not be limited to such functions as growth, maintenance, breathing rate, pulse, learning, memory, vision, etc. Animals/insects MUST be treated humanely.

PHYSICAL: Projects related to the natural sciences such as physics, chemistry, as well as earth and space sciences, which focus primarily on non-living materials. Topics may include but are not to be limited to: properties of matter, physical and chemical changes, various forms of energy, forces, motion, processes that shape the Earth, weather, etc.

ENVIRONMENTAL: Projects that focus on interactions with the natural surroundings. Projects include the relationships of energy, population, pollution, resource allocation and depletion, conservation, transportation, and technology to the total environment. Topics may include but are not limited to: reusing, recycling, or reducing use of our natural resources; ways that technology impacts our resources; ways that human interactions negatively impact the quality of life by pollution, etc.

TEAM PROJECT: A study conducted by two or three students (grades 4, 5 or 6 only) in any scientific discipline.

Note: Any project that results in microbes (including mold) being collected, isolated, and/or cultured - even if inadvertently/unintentional - will require copies of the appropriate forms (Qualified Scientist, Designated Supervisor and BSL-1 checklist) to be a part of student’s project display, or daily log, for judges’ review. This is to ensure the safety of the students and others. The original forms must be kept at school.

6. Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) done by elementary students is potentially dangerous and MUST only be done with expert and careful supervision.

Samples/organisms MUST NOT be collected, isolated and/or cultured from the environment as they are potentially pathogenic. This includes, but is not limited to projects involving blood, animal waste, soil, pond water, and culturing swabs. Instead, all microbial samples/organisms MUST be obtained from a science supplier/company and are limited to Biosafety Level 1 (BSL-1).

The BSL-1 Checklist MUST be used to guide safe practices such as sealing Petri dishes, proper disposal, etc. A Qualified Scientist Form and a Designated Supervisor Form are required to ensure the safety of the student and others. Please retain a copy of these forms at your building. The original forms must be included with the project to be viewed at check-in and by judges. Refer to Centers for Disease Control and Prevention [http://www.cdc.gov/].
Microbiology projects are potentially dangerous and should be discouraged in most cases. Directors ask that schools be accountable in this area and exclude projects where proper safety procedures and forms were not followed. A project that is not qualified MUST NOT be submitted to the Division Fair.

7. Projects involving invertebrates (e.g. worms, daphnia, fruit flies, snails, insects, etc.) **MUST** have a clear purpose that has scientific significance, invertebrates **MUST** be treated humanely, an intentionally harming them without a scientific purpose **MUST NOT** occur.

8. Projects involving non-human vertebrates (including embryos, eggs, tadpoles, and other early life cycle stages of vertebrates) are held to a higher standard than projects testing invertebrates. Vertebrates **MUST** be treated humanely, and if a project could cause pain or distress to the vertebrate the student will need to design a new question and procedures. When non-human vertebrate animals are tested and their environment is changed, a **Qualified Scientist Form** and **Designated Supervisor Form** are required to ensure humane treatment. Forms will be retained at the school level but copies **MUST** be included with the project to be viewed at check-in and by judges. A project with **ANY DEATHS** in any vertebrate group or subgroup is **NOT PERMITTED** to be entered into the Science Fair even if the deaths were unintentional.

9. In some cases, students may choose to use human subjects for their experiments. However, when an experiment could cause more than minimal risks to the human subject, the subject (and their parents, when a minor) **MUST** be informed of, and consent to, the testing procedures before the experimentation begins. In these cases, use of the **Qualified Scientist Form**, **Designated Supervisor Form**, **Informed Consent Form**, and **Human Subject Verification of Informed Consent Form** is required to ensure the safety of the human subjects. Form will be retained at the school level but, with the exception of the Informed Consent Forms, copies **MUST** be included with the project to be viewed at check-in and by judges. For more details, see the online Risk Assessment Guide at www.societyforscience.org/isef/rulesandguidelines.

10. Project involving soil and water are allowed as long as the proper safety precautions (safety glasses, gloves, and adult supervision) are followed. Water and soil samples may be collected from the environment only if water/soil quality (dissolved O₂, nitrates, phosphates, pH, salinity, turbidity, etc.) is the purpose of testing. **Plants or organisms can NOT be grown in water or soil that was collected from the environment.** A Designated Supervisor form is required.

11. **Students** are never allowed to do projects that are clearly dangerous.

 a. Testing involving firearms, knives or other items that could be considered weapons in a school setting (e.g. a paintball gun, BB gun, etc.) is not permitted.
 b. Testing involving fireworks or other explosives is not permitted.
c. Testing involving controlled substances, prescription drugs, alcohol, and tobacco is **not allowed**.
d. The use of any potentially hazardous chemicals, devices, and activities require direct supervision by a Designated Supervisor.
e. Microbial experimentation (involving microscopic organisms such as bacteria, mold, fungi, etc.) is potentially dangerous and **MUST** only be done with expert and careful supervision.
f. No mold projects are permitted.

12. Each project will be classified by grade level in one of the first three categories listed above. Team projects are not categorized by discipline or by grade level.

13. Entered projects **MUST** be completed during the present school year.

14. Exhibits should be constructed and developed by the students entering them. Help **MUST** be limited to supervision and guidance.

15. To be eligible for awards, students are required to meet all grade level requirements:

- **Grades 4-6 and Team Requirements:** Daily Log, Backboard, Summary, and Bibliography. Daily Log should be handwritten. Summary and Bibliography can be handwritten or typed. **Note:** Only one daily log is required for Team projects, but one per team member is also allowed.

Registration Requirements

1. Displays **MUST** be registered by school representatives at Space Coast Jr./Sr. High School between the hours of 12:00 p.m. and 4:00 p.m. on **February 26, 2019**.

Display Requirements

1. Displays **MUST** meet all size requirements. Exhibits will be confined to table space which **MUST** not exceed 3 feet (91 cm) from side to side, 5 feet (152 cm) high, and 30 inches (76 cm) front to back. Headers may be used if they fit within these size requirements. Projects larger than size limitations will be disqualified until changes are completed.

2. **No display items in front of exhibit/blackboard.** Only Research and/or Daily Logs. Display items cannot be brought in for judging either. Photos, charts, graphs and student knowledge will suffice in communicating the project to others.

- Backboards **MUST** be able to fold flat. Only “2 dimensional” paper, photos, pictures, lettering, designs, and borders should be on the backboard. No 3D materials should be on the backboard other than scrapbook-type foam lettering.
• The following may not be exhibited on the exhibit/backboard:
 o Live animals, preserved animal bones, feathers or other parts
 o Live or dead plants (flowers, fruits/vegetables)
 o Soil, sand, rocks, seashells, chemicals, liquids, tobacco products
 o Sharp objects (metal cans, nails, screws, pins, glass, etc.)
 o Any other potentially dangerous substance or item that may be hazardous in a public display

3. Research involving live specimens should be displayed through the use of drawings, charts, photographs, graphs, or original models.

4. Electricity will not be provided.

5. The Committee reserves the right to:
 a. Refuse an exhibit that is considered unsafe.
 b. Disqualify an exhibit which may bring discredit to the Fair.
 c. Refuse a project that did not treat invertebrates or vertebrates humanely.
 d. Refuse a project that did not involve the proper protocol and/or completed forms.
 e. Refuse a project with ANY DEATHS in any vertebrate group or subgroup. A project with these results is not permitted to be entered into the Science Fair, even if the deaths were unintentional.
 f. Projects not following proper procedures may be excluded from the Fair and may not be eligible for awards.

6. Students MAY use photographs that include their faces. Photo credit must be provided. One statement such as e.g. “All photographs taken by parents of ...” or “All photographs taken by ...” will suffice for documentation. Last name not included.

7. Students’ last names or school names MUST not be visible on either side of the display or on the Daily Log. Project numbers will identify participants.

8. Students’ last names or school names MUST not be visible on clothing during judging.

9. Items used from the Internet must be credited. (Articles, graphs, charts, pictures, etc.)

Display Setup

1. After project registration is completed, the Fair Committee will set up projects in assigned spaces. Teachers and/or parents may register for students. Due to the time constraints and influx of people, this is not the time for public viewing of the projects. Only complete projects will be accepted. School personnel should not leave until they have been told officially that all projects are checked in.

2. The Fair Committee will affix a Setup Checklist to the back of each display. Items on the checklist, which will be reviewed by the Fair Committee, include the following information:
• Completed grade level requirements
• Display meets size requirements
• Display meets safety requirements
• School or student name not visible on front or back of display or on Daily Log
• Project number and area number attached to front of display (on color-coded dots)
• Completed Qualified Scientist, Designated Supervisor, and other forms are on file at the school for projects that require them. **Copies MUST be included with certain projects to be viewed at check-in by judges.**

3. The Fair Committee reserves the right to move projects in order to accommodate participants in regards to space and safety.

4. Entrants should make every effort to secure his/her/their exhibit. The Fair Committee will safeguard all projects, but the responsibility for the security of displays rests on the participants.

Judging Process

1. Students will arrive for project judging at assigned times. **Schools will limit the number of adults providing transportation due to parking and distraction issues. Siblings and additional family members should not attend judging.**

2. Immediately prior to entering the judging area, the students will receive a judging orientation.

3. The judging process will include an interview with judges for each entrant at his or her displays.

4. Team projects will be compared to other team projects at other grade levels.

5. All other projects will be compared only to others in the same category and same grade level.

6. Science projects should involve experimental testing of a hypothesis (not just gadgeteering or “cookbook” science experiments).

7. Parents and teachers will not be permitted in the judging area (gym floor) while interviews and judging are in progress.

8. The judges will dismiss students individually from the judging area after completion of judging process.

9. The decision of the judges is final.
Awards

1. To be eligible for awards, entrants MUST have an approved Setup Checklist.

2. Entrants MUST meet all grade level and safety requirements to be eligible for awards.

3. Columbia and Discovery Divisions will receive separate awards for their area.

4. Awards will be given for first place through fifth place in each of the four categories by grade level (team projects will not receive awards by grade level).

5. A “Harris Best of Show” and a “Best of Show Runner-Up” award will be given to the outstanding projects in physical, biological, environmental and team projects in the Discovery and Columbia Divisions.

6. The judges may give one optional “Honorable Mention” award in their divisions, as they deem appropriate.

7. All entrants will receive a “Certificate of Merit”.

8. Every attempt is made to notify schools or winners before afternoon dismissal. Unfortunately, there is a short turnaround time after judging is completed and to avoid errors the process can’t be rushed.

Display Removal

Each eligible student is responsible to:

- Meet all grade level and safety requirements, including humane treatment of animals/insects.
- Backboard size and safety requirements.
- Use the Qualified Scientist, Designated Supervisor, and other required forms if doing animal/insect testing, a microbiology project, etc. Completed forms MUST be included with the project.
- Make arrangements with teacher and/or parents for project registration and setup.
- Report to judging interview at assigned time.
- Make every effort to secure his/her exhibit. The Fair Committee will make every effort to safeguard all projects.
- Not wear clothing showing last name or school name during judging.
Tips for Constructing the Project Display

Presenting Information

- Use appropriate titles.
- Label neatly, spell correctly, explain clearly, print or type all words on display.
- Use computer for lettering.
- Use unlined paper.
- Use ink or markers.
- Use colored paper for background behind information sheets.

Suggested Titles to be Shown on Display Board
(Placement of these materials and selection of other items are optional.)

- Question
- Hypothesis
- Materials
- Procedure
- Data / Results
- Conclusion

No Equipment or Models will be Displayed

No display items in front of exhibit/backboard. Only Research and/or Daily Logs. Display items cannot be brought in for judging either. Photo, charts, graphs and student knowledge will suffice in communicating the project to others.

- Backboards MUST be able to fold flat. Only “2 dimensional” paper, photos, pictures, lettering, designs, and borders should be on the backboard. No 3D materials should be on the backboard other than scrapbook-type foam lettering.
- The following may not be exhibited on the exhibit/backboard.
 ❖ Live animals, preserved animal bones, feathers or other parts.
 ❖ Live or dead plants (flowers, fruits/vegetables)
 ❖ Soil, sand, rocks, seashells, chemicals, liquids, tobacco products.
 ❖ Sharp objects (metal cans, nails, screws, pins, glass, etc.)
 ❖ Any other potentially dangerous substance or item that may be hazardous in a public display.

QUALIFIED SCIENTIST FORM

To ensure that safe and ethical science is conducted, this form is REQUIRED for research involving microbial experimentation. It is also REQUIRED when non-human vertebrate animals are tested and their environment is changed, and when human subjects are tested and there is more than minimal risk involved for the subjects.

A Qualified Scientist is a medical doctor, veterinarian or individual with relevant science credentials. A science teacher, without these specific credentials, cannot be a “qualified scientist”. This form MUST be signed prior to the start of the student’s experimentation. Copies of this form MUST be part of the student’s project documentation available at the Fair.

Student’s Name __ __________________
Title of Project __

To be completed by the Qualified Scientist:

Scientist Name ___ _____________
Advanced Degree or Certification _____________________________ _______________________
Degree of Specialty __ __________________
Position __ ________
Address ___ _______
Phone __

● Students MUST provide a copy of their Science Project Research Plan and Approval Form to the Qualified Scientist.
● Students should always follow approved procedures and never perform unauthorized experiments.

1. Will microbial samples/organisms be used: Yes No

Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) done by elementary students is potentially dangerous and MUST only be done with expert and careful supervision. Samples/organisms MUST NOT be collected, isolated and/or cultured from the environment as they are potentially pathogenic. This includes, but is not limited to, projects involving blood, animal waste, soil, pond water, and culturing swabs. Instead, all microbial samples/organisms MUST be obtained from a science supplier/company and are limited to Biosafety Level 1 (BSL-1). The BSL-1 Checklist MUST be used to guide safe practices such as sealing Petri dishes, proper disposal, etc. Centers for Disease Control and Prevention Http://www.cdc.gov/.

2. Will non-human vertebrates be used? Yes No

Projects involving non-human vertebrates (including embryos, eggs, tadpoles, and other early life cycles stages of vertebrates) are held to a higher standard than projects testing invertebrates. Vertebrates MUST be treated humanely, and if a project could cause pain or distress to the vertebrate, the student will need to design a new procedure. This form is required when changes are made to an organism’s environment. A project with ANY DEATHS in any vertebrate group or subgroup is NOT PERMITTED to be entered into the Science Fair even if the deaths were unintentional.

3. Will human subjects be used? Yes No

When an experiment could cause more than minimal risks to a human subject, the subjects (and their parents, when a minor) MUST be informed of, and consent to, the testing procedures before any experimentation begins.

I certify that I have reviewed and approved the Research Plan prior to the start of experimentation. If the student or Designated Supervisor is not trained in the necessary procedures. I will ensure his/her training. I will provide advice and supervision during the research. I have a working knowledge of the techniques to be used by the student in the Research Plan. I understand that a Designated Supervisor is required when the student is not conducting experimentation under my direct supervision.

__ _____________________ ________________
Qualified Scientist’s Name Signature of School Person Approving
__ _______________ ______________________
Signature Date of Approval

35
DESIGNATED SUPERVISOR FORM

To ensure that safe and ethical science is conducted, this form is REQUIRED when a Qualified Scientist has been identified but may not be available to supervise experimentation. A “Designated Supervisor” is someone who agrees to oversee the experiment in the event the Qualified Scientist is not available to supervise. The Designated Supervisor MUST be trained by the Qualified Scientist to ensure the safety of the student and others. All animals MUST be treated in a humane manner. A project with ANY DEATHS in any vertebrate group or subgroup is NOT PERMITTED to be entered into the Science Fair even if the deaths are unintentional. Copies of this form MUST be part of the student’s project documentation available at the Fair.

Student’s Name ___ _____________

Title of Project __ ________________

To be completed by the Designated Supervisor:

Name _____________________________ _______________________________

Advanced Degree or Certification ___ _______________________

Position __ ________

Address ___ _______

Phone __ ______

List or describe your responsibilities in supervising the student. Include all hazardous substances and devices used in the research and safety precautions to be employed: (Use back or attachments if necessary).

I certify that I have been trained in the techniques to be used by this student prior to the start of experimentation and that I will provide direct supervision.

__ _____________________ ________________

Designated Supervisor’s Printed Name Signature of School Person Approving

__ _______________ ______________________

Signature Date of Approval

The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines.
The proper procedure for using the approval process is for the teacher to send home a copy of this form with each student to complete with parent guidance then carefully review the form before approving the project.

ELEMENTARY SCIENCE PROJECT RESEARCH PLAN AND APPROVAL FORM

Elementary students designing their own experiments for science projects will need guidance to conduct safe and ethical science. Teachers, students and parents MUST work together to review and complete this form, so that everyone has a complete understanding of the intended project and is aware of any potentially dangerous or unethical situations before the student begins any testing. Each school MUST have a Science Fair Committee in place.

Questions concerning this form and other science project concerns MUST be referred to the school Fair Committee.

Guidelines for practicing safe and responsible science for students, parents and teachers

- Students are not allowed to do projects that are clearly dangerous. Testing involving firearms, knives and other items that could be considered weapons in a school setting is not permitted. Testing involving fireworks or other explosives is NOT allowed. Testing involving controlled substances, prescription drugs, alcohol, and tobacco is NOT allowed. The use of any potentially hazardous chemicals, devices, and activities require direct supervision by a Designated Supervisor.
- Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) done by elementary students is potentially dangerous and MUST only be done with an expert and careful supervision. These projects cannot be conducted at a home. Samples/organisms MUST NOT be collected, isolated and/or cultured from the environment as they are potentially pathogenic. This includes, but is not limited to, projects involving blood, animal waste, soil, pond water, and culturing swabs. Instead, all microbial samples/organisms MUST be obtained from a science supplier/company and are limited to Biosafety Level 1 (BSL-1 Checklist MUST be used to guide safe practices such as sealing Petri dishes, proper disposal, etc.
- Projects involving invertebrates (e.g. worms, daphnia, fruit flies, snails, insects, etc.) MUST have a clear purpose that has scientific significance. Invertebrates must be treated humanely and intentionally harming them without a scientific purpose MUST NOT occur.
- Projects involving non-human vertebrates (including embryos, eggs, tadpoles and other early life cycle stages of vertebrates) are help to a higher standard than projects testing invertebrates. Vertebrates MUST be treated humanely, and if a project could cause pain or distress to a vertebrate the student will need to design a new question and procedure. a project with ANY DEATHS in any vertebrate group or subgroup is NOT PERMITTED to be entered into the Science Fair even if the deaths were unintentional.
- In some cases, students may choose to use human subjects for their experiments. However, when an experiment could cause more than minimal risks to the human subject, the subjects (and their parents, when a minor) MUST be informed of, and consent to, the testing procedures before any experimentation begins. Informed Consent Forms MUST be used. Students MUST always follow approved procedures and never perform unauthorized experiments.

Note: These guidelines are adapted from the Brevard County Secondary research Guide and the Intel International Science and Engineering Fair Guidelines.

Name of Student______________________ Project Title ___________________________

RESEARCH PLAN

What question will you be testing?

Describe your plan and procedure(s) to test this question. Be sure to include enough detail to ensure that safe and responsible guidelines are being followed.

All Students must have an Elementary Science Project Research Plan and Approval Form.
Does Your Project Involve?

<table>
<thead>
<tr>
<th>Microbial Experimentation?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>If yes, you MUST obtain teacher approval and complete a Qualified Scientist Form and a Designated Supervisor Form before any testing begins. A BSL-1 Checklist must be used also.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Centers for Disease Control and Prevention http://www.cdc.gov

<table>
<thead>
<tr>
<th>Non-Human Vertebrates whose environment is being changed?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>If yes, you MUST obtain teacher approval and complete a Qualified Scientist Form and a Designated Supervisor Form before testing begins.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Subjects where there is more than minimal risk involved?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>If yes, before any testing begins you MUST obtain teacher approval and complete a Qualified Scientist Form, Designated Supervisor Form, Human Subject Verification of Informed Consent Form and Informed Consent Forms when more than minimal risks are involved. www.societyforscience.org/isef/rules andguidelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil or Water Collected from the Environment</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>If yes, you MUST obtain teacher approval and complete a Designated Supervisor Form before testing begins.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copies of all forms mentioned above MUST be part of the student’s project documentation available at the Science Fair

NOTE:
A Qualified scientist is a medical doctor, veterinarian or individual with relevant science credentials. A science teacher, without these specific credentials, cannot be a “qualified scientist”. All forms can be found in the Science Fair Handbook (see school Science Fair Contact) and on the BPS Elementary Programs Science Website. http://elementarypgms.brevardschools.org/science_fairs.htm

Does your project involve invertebrates (e.g. worms, daphnia, fruit flies, snails, insects, etc.)? Circle: Yes No
If yes, describe the purpose and scientific significance of your project: _____________________________________

Circle the category of this project: **Biological** **Physical** **Environmental**

Detailed descriptions of each category are in the Science Fair Handbook and on http://elementarypgms.brevardschools.org/science_fairs.htm

Teacher and/or Parent notes or concerns to be addressed: ___

I have read the guidelines and agree to follow the procedures of this Research Plan and Approval Form.

Student Signature ________________________________ **Date** ____________

Parent Signature ________________________________ **Date** ____________

Teacher Approval __________________________________**Date** ____________

- I approve this project.
- I do not approve this project, as currently planned.

Notes and/or Suggestions: ___

I will encourage the student to adhere to the guidelines and procedures of this Research Plan and Approval Form.

Teacher Signature ________________________________ **Date** ____________

Notes: It is recommended that teachers make a copy of this signed form for their own records and send the original home with the student. If a Qualified Scientist will be used the student MUST provide him/her with a copy of the Research Plan and Approval Form.
Informed Consent Form

To ensure that safe and ethical science is conducted, this form is required when an experiment could cause more than minimal risks to the human subject. The subjects (and their parents, when a minor) MUST be informed of, and consent to, the testing procedures before any experimentation begins. Use a separate form for each test subject. A blank copy of this form MUST be part of the student’s project documentation available at the Fair. Completed subject forms will be retained at the school level – NOT at the Fair.

For more details, see the online Risk Assessment Guide at www.societyforscience.org/isef/rulesandguidelines

Student Researcher’s Name _____________________________________ __________________
Grade ___ __
School __ ___
Title of Project ___ ____________

To be completed by the Student Researcher:

1) What are the research procedures in which the subject will be involved?
__
__
__

2) What are the possible discomforts that may reasonably be expected by participating in this research?
__
__

3) What procedures will be used to minimize risks?
__
__
__

Adult Sponsor’s Printed Name __
Signature ___________________________ Phone

Qualified Scientist’s Printed Name __
Signature ___________________________ Date Signed

Title __
Institution ___________________________ Phone

To be completed by human subject prior to experimentation:

☐ I have read and understand the conditions stated above, and I consent to participate in this research procedure. I realize I am free to withdraw my consent and to withdraw from this activity at any time.
☐ I consent to the use of visual images (e.g. photographs, video) involving my participation in this research project.

Participant’s Printed Name __
Signature ___________________________ Date Signed

If participant is under 18 years old, a parent/guardian signature is required. If the subject of this experiment or parent/guardian has any questions, the Adult Sponsor should be contacted.

I have received and reviewed a copy of any test, survey or questionnaire used in the research.
Circle one: Yes No

Parent’s/Guardian’s Printed Name __
Signature ___________________________ Date Signed
Human Subject Verification of Informed Consent Form

This Human Subject Verification of Informed Consent Form is required when student research involves human subjects and the research could cause more than minimal risks to the human subjects. This form must be attached to a sample copy of the Informed Consent Form (with no names on it) used by the student.

- A copy of these two forms MUST be part of the student’s project documentation available at the Science Fair.

- The originals, of this form and the completed Informed Consent Forms, are to be kept by the sponsor (teacher) and secured at the student’s school for a period of no less than 3 years.

Name of adult sponsor (teacher):

Name of student researcher:

Student Researcher’s School:

Number of consent/assent human subject forms collected: ____________________________

Date range of consent/assent human subject forms collected: _______________ to ___________

I, as the adult sponsor, verify that __ has collected appropriately signed and dated informed consent forms for the research project for the 2018-2019 school year.

Adult Sponsor Signature Date

Student Researcher Signature Date
BSL-1 CHECKLIST – FOR PATHOGENIC HAZARDOUS BIOLOGICAL AGENTS

Student Name: ________________________ School: ________________

Copy of form MUST be part of the student’s project documentation available at the Fair.

Pathogenic Hazardous Biological Agents BSL-1 (Biosafety Level 1):
1. Agents not known to consistently cause disease in healthy adults, and of minimal potential hazard to lab workers and the environment.

Aseptic Technique Practice:
1. Specific training in procedures being performed.
2. Supervision by qualified teacher.
3. Limited access when experimentation is taking place. (may not be done at home)
4. After plates are cultured and sealed with masking tape or Petri-Seal along the outside edge of the Petri dish, they are not to be reopened.
5. Hand washing before and after handling cultures and before leaving lab.
6. Eating, drinking, applying makeup or contacts in prohibited in the lab.
7. Work surfaces can be decontaminated after spills and at end of day wipe surfaces down with a 70% isopropyl alcohol wipe.

Safety Equipment Requirements:
1. Work can be performed on an “open bench” (laboratory area) or in a fume hood.
2. Lab coats or aprons are to be worn.
3. Appropriate gloves will be worn.
4. Protective eyewear should be worn.
5. Eyewash MUST be available.
6. Bench tops impervious to spills and resistant to moderate heat, solvents, acids, alkalis, or chemicals used to decontaminate surfaces.
7. Designed to be easily cleaned. Carpets and rugs are not appropriate.
8. Windows securable and fitted with screens.

__ _____________________
Student Signature Date

__ _____________________
Teacher Signature Date

The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines.
Science Fair Checklist Confirmation

I _____________________________________, Science Fair Contact for ________________________ Elementary School, have reviewed our students’ science projects and ensure that they align with the guidelines in the Northern Division Science Fair Handbook.

- No student conducted any unauthorized experiments, and no projects were considered unsafe or unethical.

- Necessary FORMS were completed and filed. If Qualified Scientist Form, Designated Supervisor Form, BSL-1 Checklist, Informed Consent Form, or Human Subject Verification of Informed Consent Form was needed, they were completed and are on file at the school with copies available at the Fair. (Copies of Informed Consent Forms are NOT to be included at the Fair but kept at the school only.)

- No microbial experiment involving microscopic organisms such as bacteria, fungi, etc. was done without expert and careful supervision.

- No microbial samples/organisms were collected, isolated and/or cultured from the environment. All microbial samples/organisms were obtained from a science supplier/company and were limited to a Biosafety Level 1 (BSL-1).

- No microbial experiments involved blood, animal waste, soil, pond water, growing mold or culturing swabs from the environment.

- Projects involving invertebrates such as worms, daphnia, fruit flies, snails, and insects were treated humanely, and intentionally harming them without a significant scientific purpose did not occur.

- Non-human vertebrates, including embryos, eggs, tadpoles, and other early life cycle states of vertebrates, were treated humanely and did not experience pain or distress.

- No deaths in any vertebrate group or subgroup occurred, even unintentionally.

- No firearms, knives, paintball guns, BB guns, or other items considered weapons in a school were permitted.

- No fireworks, explosives, controlled substances, prescription drugs, alcohol, or tobacco were permitted.
Northern Division Elementary
ART FAIR
February 26 & 27, 2019

Space Coast Jr./Sr. High School
6150 Banyon Street, Cocoa, FL 32927

Coordinators/Committee
BPS K12 Visual Arts Content Specialist
Meagan Kern, Art Teacher – Enterprise Elementary
James Burks, Art Teacher – Ralph Williams Jr. Elementary

Art Fair Schedule

September 2018 Art/Science Fair Handbooks distributed to school contacts.

November 2, 2018 Art Fair Entry Fee Due: $30
● Make checks payable to Enterprise Elementary

February 15, 2019 Inventory Participant Form DUE by 3:00pm
● Complete the Inventory Form with correct information
● Make a 2nd copy for your records and 3rd copy for your office staff
● Forward form to Meagan Kern: via email (scan form) to kern.meagan@brevardschools.org
or send form in BPS courier to Meagan Kern, Art Teacher – Enterprise Elementary School.

February 26, 2019 Art Fair Exhibit Take-in and Set-up
● Deliver all prepared student art entries to Space Coast Jr./Sr. HS gym by 4:00 p.m. ONLY
properly prepared artwork (see guidelines), delivered on time, will be considered for judging.
● Committee will set up display.

February 27, 2019 Art Fair Open House, Award Ceremonies, and Exhibit Take-Down*
● Judging in a.m. (Award winning schools will be notified by 1:30 p.m.)
● Open House - 5:30 to 6:45 p.m. at Space Coast Jr./Sr. HS Gymnasium
● Awards Ceremonies - Space Coast J/S HS cafeteria
 6:00 p.m. – Discovery Division 6:45 p.m. – Columbia Division
● Exhibit Take-Down & Sign Out – Approx. 7:00 p.m., following last art awards presentation

*No artwork may be taken down until after ALL awards ceremonies have concluded.

*Art Teachers/Contacts MUST stay to help with removal of all artwork, tables, and display boards. AFTER
exhibit is completely disassembled, collect and account for participants’ artwork on inventory form, ribbons, and/or certificates before signing out artwork. Art Teachers/Contacts are responsible for taking ALL entries back to their school once the take-down process concludes.

No individual pieces of art will be released to parents or students.
Artwork Requirements & Guidelines

- Each school may enter two pieces per grade level (ONLY one – 2D and one – 3D artwork per grade level).

- All exhibited student artwork must have been created during the current school year (during art class or classroom art time at school). Artwork must be the work of one student and completed at school. (No group or team work allowed.)

- No kits! All work must be the original design made only by the student indicated on the label.

- No copyrighted characters, logos, symbols or direct replication of any published images (including online images found in websites such as Pinterest).

Artwork Presentation

Finished pieces cannot exceed 28 inches in any direction including mat, backing, base or any other display materials. All work must be finished with a “professional look” and ready to display for quality presentation.

2-Dimensional (flat): Use tag board, mat board, or poster board, something heavier than a single piece of construction paper. Cut mat or backing board approximately 2-3 inches larger than artwork on each side. No laminated work, frames, glass, or heavy/thick backing.

2D Artwork

Tabs for hanging (or adhere rough side of Velcro on back)

Artist’s statement
(no larger than 3x5” and 2-6 typed lines of simple font/text)

BPS Label (also attach a duplicate label on back of artwork)
3-Dimensional ("in the round" with obvious width, height and depth): Select a base or backing material that is suitable for display and complimentary to piece. Attach the artwork to the base using glue, tape, or any material to SECURELY fasten the artwork without any damage. Covered or draped boxes can be used to elevate artwork. Attach the typed BPS label to the bottom of the right corner of base or backing.

Labels & Artist’s Statements

- **Use BPS Art Labels** provided (found on BPS Visual Arts Share Site or from event coordinators).
- All information on labels/statements **MUST BE TYPED** in simple text, no smaller than 14 pt. font.
- Do not indicate any special needs or exceptional education class/category (ESOL, VE, EELP, etc.).
- Student artists’ statements are optional, but highly recommended! (3x5” card backed with slightly larger colored paper mount is best). Do not include student’s name or photo on statement.
- Labels/statements should be completed and attached BEFORE artwork is delivered to exhibit.
- **DO NOT DOUBLE OVER THE TAGS.** Labels will be covered for judging with a sticky note.

OVERSIZED PIECES WILL NOT BE JUDGED.
Judging Process & Recognition

Entries will NOT be judged if any parts of the registration, inventory form, artwork, or labels are submitted late or if artwork does not meet designated guidelines/criteria.

Art Fair judges are practicing artists and/or art educators with extensive background in the visual arts. They are familiar with the art development or ability levels in young children and will consider the following criteria when selecting award winners:

a. **Adherence to Guidelines**

b. **Creativity and Originality** – use of unique, risk taking and innovative qualities
 (no direct replication of another’s image or art)

c. **Design** - use of the Elements of Art or Principles of Design for composition quality or utilitarian function

d. **Craftsmanship** – close attention to skill, technique, and detail

e. **Dramatic Value** - expressive voice, communication of idea/emotion, or narrative story

Awards

<table>
<thead>
<tr>
<th>Discovery Division</th>
<th>Columbia Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Best of Show*</td>
<td>One Best of Show*</td>
</tr>
<tr>
<td>4th Grade: 2D Category – 1st, 2nd, & 3rd Places 3D Category – 1st, 2nd, & 3rd Places</td>
<td>4th Grade: 2D Category – 1st, 2nd, & 3rd Places 3D Category – 1st, 2nd, & 3rd Places</td>
</tr>
<tr>
<td>5th Grade: 2D Category – 1st, 2nd, & 3rd Places 3D Category – 1st, 2nd, & 3rd Places</td>
<td>5th Grade: 2D Category – 1st, 2nd, & 3rd Places 3D Category – 1st, 2nd, & 3rd Places</td>
</tr>
<tr>
<td>6th Grade: 2D Category – 1st, 2nd, & 3rd Places 3D Category – 1st, 2nd, & 3rd Places</td>
<td>6th Grade: 2D Category – 1st, 2nd, & 3rd Places 3D Category – 1st, 2nd, & 3rd Places</td>
</tr>
<tr>
<td>15 Merit Awards*</td>
<td>15 Merit Awards*</td>
</tr>
</tbody>
</table>

*Best of Show and/or Merit Awards can be selected from any grade level at the judges’ discretion.

Notifications of winners will be completed by 1:30 p.m. on day of judging. Each school will be called if they have winners, and schools need to notify student winners before they leave school that day so they can plan to be present at awards ceremony. Time is short! **Plan ahead!** Give a copy of the inventory form to your office staff AND please inform them to notify winning students ASAP.

Encourage Student/Parent Attendance by creating fun invitations or flyers, post in your school newsletters, and on your school’s web site. Also, remember to invite your School Administration and Faculty!

Teachers should recognize all student participants at school with participation certificates and/or ribbons provided at take-down with artwork.
NORTHERN ELEMENTARY ART & SCIENCE FAIR
SCHOOL DIVISIONS

<table>
<thead>
<tr>
<th>Discovery Division</th>
<th>Columbia Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson</td>
<td>Apollo</td>
</tr>
<tr>
<td>Cambridge</td>
<td>Atlantis</td>
</tr>
<tr>
<td>Cape View</td>
<td>Audubon</td>
</tr>
<tr>
<td>Challenger 7</td>
<td>Coquina</td>
</tr>
<tr>
<td>Divine Mercy</td>
<td>Enterprise</td>
</tr>
<tr>
<td>Emma Jewel Charter</td>
<td>Imperial Estates</td>
</tr>
<tr>
<td>Endeavour</td>
<td>Lewis Carroll</td>
</tr>
<tr>
<td>Fairglen</td>
<td>MILA</td>
</tr>
<tr>
<td>Freedom 7</td>
<td>Mims</td>
</tr>
<tr>
<td>Golfview</td>
<td>Oak Park</td>
</tr>
<tr>
<td>Manatee</td>
<td>Our Saviour</td>
</tr>
<tr>
<td>Ralph Williams</td>
<td>Pinewood</td>
</tr>
<tr>
<td>R. L. Stevenson</td>
<td>St. Teresa</td>
</tr>
<tr>
<td>Roosevelt</td>
<td>Sculptor Charter</td>
</tr>
<tr>
<td>St. Mark’s</td>
<td>South Lake</td>
</tr>
<tr>
<td>Saturn</td>
<td>Tropical</td>
</tr>
<tr>
<td>Viera Charter</td>
<td></td>
</tr>
</tbody>
</table>
NORTHERN DIVISION ELEMENTARY ART FAIR
INVENTORY/PARTICIPATION ENTRY FORM

School: __
Art Teacher (contact person): _________________________ Phone: _____________________ Fax: __________

School Address: ____________________________________ Email Address: _______________________________

Secretary Name, Phone/Extension: __
Principal Name, Phone/extension: __

Please verify that all blanks are filled in correctly. ONLY TWO ENTRIES PER GRADE: 1 - 2D and 1- 3D per grade level ONLY. Please keep a copy for your records, give a copy to your front office secretary, and also submit a copy with your artwork when you drop it off at check in.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Student Name</th>
<th>Medium</th>
<th>Title or Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td>3D</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3D</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3D</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3D</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3D</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>3D</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>2D</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>3D</td>
</tr>
</tbody>
</table>